Beyond A/B Testing

Getting More from Experiments

Bob Wilson (he/him/his)
Data Scientist @ Netflix

May 3, 2023
Outline

Guardrail Metrics

Noncompliance

Heterogeneous Treatment Effects

Reading List
Sample Ratio Mismatch

- Scenario: A/B test with 50/50 test/control split.
- Observation: 52K people in test group, 48K in control.
Sample Ratio Mismatch

- Scenario: A/B test with 50/50 test/control split.
- Observation: 52K people in test group, 48K in control.
 - Highly implausible to have this imbalance ($p=1e^{-36}$).
- Conclusion: Something went wrong; should investigate cause.
Guardrail Metrics

- Not the primary measure of interest in a test.
- Ensures test was conducted properly or surfaces unintended consequences.
- Sample Ratio Mismatch (SRM) is a guardrail metric that can highlight problems with the test.
 - (Kohavi, Tang, and Xu 2020)
Sample Ratio Mismatch as a Guardrail Metric

- **Flawed Approach:** test the null hypothesis the sample ratio matches the test design.
 - Rejecting this null hypothesis proves the test deviated from the design.
 - Flaw: failing to reject the null hypothesis does not prove the test matched the design.

- **Asymmetric Roles of Null and Alternative Hypotheses:**
 - Rejecting the null proves the alternative.
 - Failing to reject the null does not prove the null; it proves nothing.
 - Always set the alternative hypothesis to be the thing you want to prove.

- **Want to prove sample ratio, q, matched test design.**
 - Null Hypothesis: $q < 0.5 - \epsilon$ or $q > 0.5 + \epsilon$.
 - Alternative: $0.5 - \epsilon \leq q \leq 0.5 + \epsilon$.
 - Equivalence test.
Equivalence Testing

• Equivalence test at level α:
 • (Wellek 2010)
 • Calculate a $100(1 - 2 \cdot \alpha)$% confidence interval on the sample ratio.
 • Check if confidence interval entirely within $(0.5 - \epsilon, 0.5 + \epsilon)$.
 • Choose fairly large $\epsilon \approx 0.01$, say:
 • Power should be $\gg 80\%$, say 99% or 99.9%.
 • Small imbalances are fine; want to highlight big imbalances while avoiding false alarms.
“Do No Harm” Guardrails

- Every A/B test has one or more (ideally exactly one) evaluation criteria.
- Hopefully thing being tested improves the evaluation criteria.
- Any change may have unintended consequences.
 - Detect and surface as risks.
- Suggestions: engagement, retention, conversion rates, ...
- Don’t care about improving these.
 - Want to avoid harming them.
Non-Inferiority Testing

- **Goal**: prove change did not harm guardrail metric.
 - Set alternative hypothesis to be the thing we want to prove.
- **Null hypothesis** is that change *did* harm metric.
 - Requires margin parameter, \(\varepsilon > 0 \).
 - \(H_0 : \text{effect} < -\varepsilon \).
 - Set fairly large to avoid false alarms.
 - Want high power!
Summary So Far

• Want to reject null hypothesis that at least one guardrail violated.
 • Alternative: all guardrails satisfied.
• When all guardrails satisfied, statistical power is the probability we correctly conclude that.
 • Want power very high.
• Typical adjustment for multiple comparisons reduces power both for guardrail metrics and primary evaluation criteria.
Intersection-Union Test

- (Berger 1982)
 - Idea: test hypotheses sequentially at the nominal levels (as if there were no multiple comparisons), but if we fail to reject a null hypothesis, don’t evaluate any other metrics (including primary evaluation criterion).
 - If we reject each individual null, conclude all guardrails satisfied and evaluate primary criterion.
 - Controls the overall Type-I error rate (Rosenbaum 2008).
- Justification: if something has gone wrong with the test, conclusions likely not valid or of secondary importance.
 - More complicated closed testing approaches allow for still testing the primary criteria, but with less power to adjust for multiple comparisons (Wiens and Dmitrienko 2005).
Key Takeaways

- Guardrail metrics increase confidence:
 - Test was administered properly.
 - No unintended side-effects.
- Use the right test for the objective.
 - Alternative hypothesis matches what we want to prove.
 - Null hypothesis is the logical complement.
- Closed testing procedures avoid inflating Type-I error rate or reducing power.
Further Reading

One-Sided Noncompliance

• How does sample ratio mismatch occur?
 • One possibility: server outages.

• Example: Feature Gate.
 • Release new feature to some people and not others, at random.
 • Requires coordination between client and server.
 • Server outages can cause one-sided noncompliance: people receiving a treatment that doesn’t match their intended group assignment.

• Other examples of one-sided noncompliance:
 • Encouraging people to use new feature.
 • Marketing/Holdout split for ROI measurement.
 • People in Marketing group may not actually see ad.
As-Treated and Per Protocol Analyses are Flawed

- **As-Treated:**
 - Ignore treatment assignment.
 - Compare behavior of people who use feature with people who don’t use feature.

- **Per Protocol:**
 - Ignore people in holdout who use feature,
 - or people in treatment who don’t use feature/see ad.

- **As-Treated and Per Protocol** provide biased estimate of treatment effect.
 - Features correlated with noncompliance and outcome confound comparison.
 - (Imbens and Rubin 2015, sec. 23.9)
Intent-to-Treat Analysis

- Intent to Treat: Ignore noncompliance.
 - Treatment/control split is randomized, so no bias.
- Measures impact of treatment assignment, not feature use or ad exposure
 - For minor noncompliance, basically the same.
- Intent to Treat measures the wrong thing, but what it measures is unbiased.
Potential Exposures

• Let $Z_i(0) = 1$ if individual i would be exposed to feature if assigned to holdout group and 0 otherwise.
• Let $Z_i(1) = 1$ if individual i would be exposed to feature if assigned to treatment group and 0 otherwise.
 • One-sided noncompliance $\Rightarrow Z_i(0) = 0$ for everyone or $Z_i(1) = 1$ for everyone (depending on type of noncompliance).
• **Know** counterfactual exposure for one group.
 • Can only speculate about counterfactual exposure for other group.
Compliers and Non-Compliers

- If $Z_i(0) \neq Z_i(1)$, call person i a “complier”.
 - Otherwise, $Z_i(0) = Z_i(1)$ and call person i a “non-complier”.
 - We know the categories for one group but not the other.
- By random assignment, the proportion of compliers and non-compliers roughly equal in both treatment and holdout groups.
Potential Outcomes

- Let $Y_i(0)$ be the outcome we would observe for person i if assigned to holdout.
- Let $Y_i(1)$ be the outcome we would observe for person i if assigned to treatment.
- We observe the potential outcome corresponding to the group assignment.
 - We can only speculate about the counterfactual outcome.
- Effect of treatment on person i is $Y_i(1) - Y_i(0)$.
 - Individual treatment effects are unobservable!
 - Can only estimate average treatment effects across multiple people.
Instrumental Variables

- Intent to Treat estimate averages over compliers and non-compliers:

\[\text{ITT} = \text{Impact}_{\text{compliers}} \cdot \pi_{\text{compliers}} + \text{Impact}_{\text{non-compliers}} \cdot \pi_{\text{non-compliers}}. \]

\[\pi_{\text{compliers}} + \pi_{\text{non-compliers}} = 1. \]

- Suppose we believe \(\text{Impact}_{\text{non-compliers}} = 0. \)

\[\Rightarrow \text{ITT} = \text{Impact}_{\text{compliers}} \cdot \pi_{\text{compliers}} \]

\[\Rightarrow \text{Impact}_{\text{compliers}} = \frac{\text{ITT}}{\pi_{\text{compliers}}}. \]
Partial Identification

- Cannot infer average treatment effect since cannot infer effect on non-compliers.
- If outcome bounded (say, binary), effect on non-compliers is bounded (say, between -1 and +1).
- Manski-based uncertainty interval on average treatment effect (Manski 2003):
 \[\text{Impact}_{\text{compliers}} \cdot \pi_{\text{compliers}} \pm \pi_{\text{non-compliers}}. \]
Dose-Response Models

• Suppose noncompliance is temporary.
 • ⇒ effect on non-compliers non-zero, but still small.
 • Insight: treatment effect proportional to exposure:

\[
Y_i(1) - Y_i(0) = \beta \cdot (Z_i(1) - Z_i(0))
\]

(1)

• Works for 2-sided non-compliance as well.

• Randomization Inference:
 • (Rosenbaum 2020, sec. 18.4)
 • Rearrange (1):

\[
Y_i(1) - \beta \cdot Z_i(1) = Y_i(0) - \beta \cdot Z_i(0).
\]

• To test null hypothesis \(\beta = \beta_0\), form adjusted responses in each group and test equality of distributions (t-test, Wilcoxon rank sum, \ldots).
Key Takeaways

- Easy to adjust for minor noncompliance
- Don’t use As-Treated or Per Protocol!
- Intent to Treat measures the wrong thing, but what it measures is unbiased
- If we assume the impact on non-compliers is zero, can estimate effect on compliers.
 - Average treatment effect partially identified.
- More nuanced models for usage-impact possible.
Further Reading

What are Heterogeneous Treatment Effects?

- Humans are complex, diverse creatures.
- Different people may react very differently to the same treatment or experience.
- Heterogeneous Treatment Effect (HTE) estimation attempts to model these differences.
 - Also known as Uplift Modeling or Conditional Average Treatment Effects (CATE).
Why are HTEs Important?

- Chemotherapy is beneficial for (some) people with cancer.
 - Harmful for people without cancer!
 - Knowing who is likely to benefit from a treatment is essential.

- Consider two new vitamins in development:
 - Vitamin 1 is slightly beneficial for everyone.
 - Vitamin 2 is extremely beneficial for some and harmful for others, but on average it’s slightly beneficial.
 - Vitamin 2 broadly dangerous, but safe when targeted appropriately.

- Understanding HTEs highlights risks associated with a treatment.
 - Permits targeting treatment at those who benefit the most.
Use Cases for HTEs

- Targeted discounts:
 - Discounts are counterproductive for people who were planning to purchase already.
 - Target discounts at people whose uplift in conversion rate makes up for the decrease in revenue.

- Personalized ads:
 - Different ads will resonate best with different people.
 - Digital platforms use bandit algos to target the right ad to the right person.
Machine Learning and HTE Estimation

- Suppose we observed the treatment effect for each individual as well as various covariates like age, gender, hobbies, ...
 - Use ML to fit a model predicting treatment effect based on observed features.

- Individual treatment effects are unobservable.
 - Instead, we run an A/B test with treatment and control arms,
 - compare outcomes between groups to estimate average effect,
 - and incorporate covariates to assess HTE.
Two-Model Approach

- Simple, intuitive, but not efficient strategy:
 - Fit a model using covariates, x, to predict outcome in treatment group, $\hat{f}_1(x)$.
 - Fit another model for control group, $\hat{f}_0(x)$.
 - $g(x) := \hat{f}_1(x) - \hat{f}_0(x)$ predicts the treatment effect for a person with covariates x.

- Why it doesn’t work well:
 - Errors in two models can magnify each other.
 - More sophisticated approaches train models in tandem to prevent this (Künzel et al. 2019; Kennedy 2022).
Summarizing Treatment Effects

- Most approaches estimate treatment effect for each individual.
- Decision trees helpful for summarizing and visualizing results.
 - First node most important predictor of treatment effect.
- Inference must account for model selection.
 - Data splitting: fit models on half of data; apply on other half (Athey and Imbens 2016).
- Closed testing helpful for multiple comparisons!
 - (Rosenbaum 2008)
 - Test first node at level 0.05.
 - \(p > 0.05 \Rightarrow \text{stop}. \)
 - Test nodes at layer \(N + 1 \) at level \(0.05 \times 2^{-N} \).
 - Abandon paths when we get an insignificant p-value.
 - Continue down tree until significance budget fully spent.
HTEs not Causal

- Example: marketing measurement with holdout group.
 - Strong impact on purchase behavior for men.
 - Weak impact for women.
- Claiming ad had bigger impact on men is true but potentially misleading.
 - Suppose ad equally effective for male and female sports fans, equally effective for male and female non-fans.
 - Ad more effective for sports fans than non-fans.
 - Suppose ad was targeted to male sports fans and female non-fans.
 - Gender is a red-herring, sports fandom (and weird targeting) is the real explanation.
- HTEs do not have a causal interpretation, even when based on a perfectly-executed A/B test.
Causal Interactions

- (VanderWeele 2015) calls HTEs with a causal interpretation, “causal interactions”.

- Option 1: Double Randomization
 - Randomize treatment and one or more modifiers.
 - Variation in treatment effect across modifiers is causal thanks to randomization.
 - Only possible for modifiers that can be controlled.

- Option 2: Observational study
 - Treatment still randomized.
 - Analyze HTEs as before, but include all confounders as features.
 - May not observe all confounders!
 - Conclusions sensitive to functional form.
Key Takeaways

- People will react differently to the same treatment.
 - A treatment may be beneficial in some cases and harmful in others (e.g. chemotherapy).
- HTEs helpful when there is a cost associated with treatment.
 - Target treatment only where there is sufficient benefit to justify the cost.
 - Examples: discounts, marketing.
- HTEs do not have a causal interpretation.
 - Must use observational techniques to infer causal aspects.
Further Reading

A Reading List for Observational Studies