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1 Introduction

This paper introduces a Python library called gamdist, which uses a distributed optimization
technique called the Alternating Direction Method of Multipliers (ADMM) to fit a special
type of regression model called a Generalized Additve Model (GAM) to data.

Outline of Paper In §2 we describe Generalized Additive Models. In §3 we describe the
Alternating Direction Method of Multipliers and how it may be used to fit GAMs. In §4,
we describe the architecture of the library, including relevant implementation details.

2 Generalized Additive Models

The primary goal of gamdist is the estimation of certain aspects of the joint distribution of
a collection of one or more random variables X called features and a random variable Y we
will call the response. Specifically, we are interested in the conditional distribution of Y | X.
We base our conclusions on a collection of observations {(x(i), y(i))}i=1,...,n drawn IID from
the joint distribution of X and Y . Actually, under certain circumstances the observations
may be drawn from a distribution different than the one we are attempting to understand.
This is a point that does not receive enough attention in books on regression, so we will
quickly give an overview.

Suppose the joint distribution of X and Y is F , with density fX,Y (x, y). Denote by fX(x)
the marginal density of X obtained by integrating the joint density over Y . Suppose f ′X(x)

is any density function with the same support as fX . Define f ′X,Y (x, y) = fX,Y (x, y) · f
′
X(x)

fX(x)
.

Integrating both sides over Y and then X shows that f ′X,Y is a valid probability density
function, corresponding to a distribution F ′. The conditional distribution of Y | X is the
same for both distributions since

f(Y | X) =
f(X, Y )

f(X)
=
f ′(X, Y )

f ′(X)
= f ′(Y | X).

Whether we observe IID samples from F or F ′, we estimate the same conditional distribution.
For this reason, we say that F and F ′ are compatible. This fact may be exploited to provide
greater precision in regions where fX(x) is small; by over-sampling in this region (choosing
f ′X(x) � fX(x)) we can obtain greater precision. In fact, we may wish to choose f ′X to be
fairly uniform over a region of interest to provide consistently high precision throughout. In
an experimental setting, where we can choose the sampling mechanism, this is a powerful
concept. We still must convince ourselves that the distribution from which we are sampling
is indeed compatible with the distribution we want to learn about. In general, there is no
reason to believe the distributions from which we draw our observations and on which we
make our predictions are compatible!

We now discuss the linear model, which assumes Y | X = x ∼ N (µ(x), σ2), where
µ(x) = ν(x)Tβ. This notation captures three key assumptions of the linear model. First, the
conditional distribution is Gaussian for all values of X. Second, the mean of the distribution
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depends on the features X in a fairly specific way discussed below. Third, the variance is
the same for all values of X. These assumptions are all loosened in various generalizations
of the linear model used in gamdist.

If we choose ν(x) = x, then the assumption is that µ(x) = xTβ, and the mean depends
linearly on the features; however, the linear in linear model refers to the dependence on β,
not on the features. It is common to include a constant term in ν(x) to account for an affine

dependency between the features and the response. For example, ν(x) =
[
1 x1 x2 · · ·

]T
.

We might incorporate quadratic terms to capture nonlinear dependencies including inter-

actions, such as ν(x) =
[
x1 x2 x2

1 x1 · x2 x2
2 · · ·

]T
. Or we might include more exotic

transformations of the features, like ν(x) =
[
log(x1) sin(x2) · · ·

]T
. These models are non-

linear in the features, but linear in the parameters β; however, the linear model will only
incorporate transformations that we explicitly include. Since ν is more than just the feature
vector we call it the design function.

Another common situation is when some or all of the features are categorical. For exam-
ple, consider a model with a single feature corresponding to a person’s favorite color, and
suppose choices are limited to red, green, and blue. The model would consist of the average
responses for people who prefer any particular color. We might support such a model by
defining

ν(x) =



[
1 0 0

]T
if x = red[

0 1 0
]T

if x = green[
0 0 1

]T
if x = blue.

Alternative approaches to encoding categorical variables are common and useful in different
circumstances. We see that the simple linear model is applicable to a wide range of problems,
even those that may not appear linear at first glance.

Fitting a linear model to a set of observations is called linear regression, and is accom-
plished by solving a least squares optimization problem. This is an example of maximum
likelihood estimation (MLE), itself a special case of maximum a posteriori (MAP) estima-
tion, which is the unifying approach used throughout gamdist. It is worth formulating
this optimization problem so that we may see how it evolves as we consider more general
scenarios.

Recall that we have n observations of the form {(x(i), y(i))}i=1,...,n drawn IID from a
distribution compatible with the distribution of interest.1 Under the assumptions of the
linear model, Y | X = x(i) ∼ N (µ(x(i)), σ2). The likelihood of a particular observation is

L(β;x(i), y(i)) =
1√

2πσ2
· exp

(
− 1

2σ2

(
y(i) − ν

(
x(i)
)T
β
)2
)
.

Note that by convention the likelihood is interpreted as a function of β parameterized by the
observation (x(i), y(i)). The likelihood of the entire set of observations is the product of the

1This assumption is loosened in random effects or mixed effects models which are not considered here;
see [Str12].
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likelihoods of the individual observations: L(β;x, y) = Πn
i=1L(β;x(i), y(i)). The log-likelihood

is the sum of the log-likelihoods of the individual observations:

`(β;x, y) = logL(β;x, y) = −n/2 log(2πσ2)− 1

2σ2

n∑
i=1

(
y(i) − ν

(
x(i)
)T
β
)2

.

Maximizing the likelihood is the same as maximizing the log-likelihood, and if we are only
interested in estimating β, this is equivalent to the problem

minimize
n∑
i=1

(
y(i) − ν

(
x(i)
)T
β
)2

,

where the variable is β and y(i) and ν(x(i)) are data. An elementary result in optimization
theory is that a unique solution exists if and only if V TV is full rank, where the ith row of
V is equal to ν(x(i))T . In that case, the optimal β satisfies the so-called normal equations:

V TV β̂ = V Ty.

If we assume the model is correct (that is, that the conditional distribution really has
the assumed form), exact formulae exist for confidence intervals on the parameters β. If the
variance is unknown, it too can be estimated from the data. We can employ hypothesis tests
against the null hypothesis that some or all of the components of β are zero. We can apply
the resulting model to new data assumed to be drawn from the same joint distribution to
compute confidence intervals on the response, Y | X = xnew or the mean of this distribution,
µ(xnew). These are immensely valuable tools in the analysis of data and the application of
data to predictions. A good reference on linear models is [Wei05]. Useful results are collected
in Appendix A.

Even if the assumptions underlying the linear model are correct, if the noise is high,
or if the number of features is large relative to the number of observations, we may use
regularization to improve both the estimates of β and predictions based on the estimated
model. Regularization reduces the sensitivity of the estimates to noise at the expense of
introducing bias, and may be thought of as imposing a Bayesian prior on the parameters
β. Some of the most common forms of regularization include ridge regression and the lasso
[Tib96]. For example, the lasso may be formulated as the problem:

minimize
n∑
i=1

(
y(i) − ν

(
x(i)
)T
β
)2

+ λ · ‖β‖1,

but this problem does not have a closed-form solution. Moreover, introducing regularization
means the formulation is no longer a maximum likelihood estimation problem. Instead, it is
a maximum a posteriori estimation problem. MLE problems have some statistical properties
that MAP estimation problems do not possess.

If the conditional distribution is not Gaussian, other techniques may prove more useful.
For example, if the conditional distribution is Laplacian, we may use least absolute deviation

5



regression instead of least squares [BD93]. Like with the lasso, there are no exact formulae for
statistical inference in this context and we must settle for an asymptotic or non-parametric
approach such as the bootstrap [ET93].

Yet another approach to extending linear models was introduced by [NW72] and dis-
cussed in detail in [MN89]. Their formulation extends the linear model in a few ways.
The conditional distribution is not assumed to be Gaussian. Common alternatives include
the binomial and Poisson distributions. The mean of the distribution is permitted to de-
pend on the features in a more complicated way, via the introduction of a link function,
g: g(µ(x)) = η(x) = ν(x)Tβ. When g(x) = x, this recovers the same relationship between
the features and µ assumed in the linear model, but other link functions may be used like
the logistic function g(x) = log(x/(1− x)). Finally, the variance is sometimes permitted to
depend on x instead of being constant. Such models are called Generalized Linear Models
(GLMs). Fitting such models is accomplished via maximum likelihood estimation:

minimize
n∑
i=1

`
(
β;x(i), y(i)

)
.

Regularization may be added to the objective term just as in linear regression, but then this
is no longer a MLE problem. For many choices of distribution family, link function, and
regularization, the corresponding optimization problem is convex. Appendix B collects some
useful results about GLMs.

Introduced by [HT86], Generalized Additive Models (GAMs) extend GLMs by permitting
η(x) to be a nonparametric function of the features: η(x) =

∑p
i=1 hi(xi), where hi are

smooth functions. When hi(xi) = βixi, the linear model is recovered (all of the parametric
dependencies discussed with regards to ν are still possible here of course, but the idea is
that the data itself should tell us the form of the relationship). Typically the hi functions
are chosen to be some sort of spline, such as a natural cubic spline. Yet again, GAMs are
fit using MAP estimation, and when the functions hi are chosen to be natural cubic splines,
this corresponds to a convex optimization problem. The full optimization problem may be
formulated as:

minimize
n∑
i=1

`
(
β;x(i), y(i)

)
+ r(β),

where r is a regularization function applied to the parameters β alone (and not to the data).

3 The Alternating Direction Method of Multipliers

4 Software Architecture

Acknowledgments

This is an example of an unnumbered section.

6



A Properties of the Linear Model

In this section, we state various useful facts (without proof) regarding the linear model.
For details, see [Wei05], [SL03], [Woo17], and [CB01]. The goal of this section is twofold:
to gather formulae used in gamdist, and to highlight what we typically want to do in a
regression analysis, beyond just fitting the model. In fact, it is often desirable to quantify
the uncertainty in fitted model parameters, check the assumptions of the model through ex-
amination of the residuals, perform model selection, and quantify the uncertainty associated
with predictions.

The beauty of the linear model is that exact formulae are attainable in support of these
goals. Other types of regression only support asymptotic or approximate formulae. However,
it is rarely the case that the assumptions of the linear model are expected to hold exactly.
If the assumptions are approximately valid, we may hope the formulae which follow are
approximately valid. Much has been written about the robustness of these formulae under
deviations from the assumptions [SL03, §9]. We are inspired by the maxim [BD87], “All
models are wrong, but some are useful.”

A.1 Properties of the Estimated Model

Suppose Y | X = x ∼ N (µ(x), σ2), where µ(x) = ν(x)Tβ and ν(x) ∈ Rp is a known function.
Let {(x(i), y(i))}i=1,...,n be IID samples drawn from the joint distribution of X and Y . Let V

be the matrix whose ith row is ν(x(i)), and assume V is full rank. Let β̂ = (V TV )−1V Ty.
Then β̂ ∼ N (β, I−1), where I = (V TV )/σ2 is the Fisher information matrix. Specifically,
β̂ has a multivariate normal distribution, and β̂ is an unbiased estimate of β. It is also a
consistent estimate of β, meaning that β̂ converges in probability to β, as n increases without
limit. It is also the best linear unbiased estimate of β: any other linear, unbiased estimates
have higher variance than β̂ [Woo17, § 1.3.9].

A simple modification permits the model to be much more flexible. Suppose that the
ith observation has variance σ2/w(i), where w(i) are known, positive numbers. Let U be the

matrix whose ith row is
√
w(i)ν(x(i)), and let z(i) =

√
w(i)y(i). Then the conclusions of this

section are valid substituting y → z and V → U . For example, β̂ = (UTU)−1UT z is the best
linear unbiased estimate of β [Wei05, § 5.1]. When w(i) = 1, we get the original results since
V = U and y = z. In what follows, we will proceed in terms of V and y.

If σ2 is unknown, it may be estimated from the data. Let

σ̂2 =
‖y − V β̂‖2

2

n− p
. (1)

Then (n − p)σ̂2/σ2 ∼ χ2
n−p, and β̂ and σ̂2 are independent [Wei05, § 3.4.4]. This indicates

that σ̂2 is an unbiased estimate of σ2.
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A.2 Confidence Intervals and Hypothesis Tests

Suppose Prob{χ2
n−p ∈ (`, u)} = α; that is, (`, u) is a confidence interval (at level α) on a

χ2
n−p random variable. Then

Prob

{
σ2 ∈

(
(n− p) · σ̂2

u
,
(n− p) · σ̂2

`

)}
= α. (2)

A particularly useful case is when u→∞, corresponding to ` = Φ−1
χ2
n−p

(1− α), where Φχ2
n−p

is the cumulative distribution function of a χ2
n−p random variable, in which case

Prob

{
σ2 <

(n− p) · σ̂2

Φ−1
χ2
n−p

(1− α)

}
= α,

corresponding to an upper confidence limit on σ2, at level α.
We may compute confidence intervals on linear combinations of the components of β by

noting that cT β̂ ∼ N (cTβ, ‖c‖2
I), where ‖c‖2

I = cTI−1c is (the square of) the Mahalanobis
norm [SL03, § 3.11.1], and thus

cT β̂ − cTβ
‖c‖I

∼ N (0, 1). (3)

Let z1−α/2 be the upper α/2 quantile of a standard Gaussian random variable. Then

cT β̂ ± z1−α/2 · ‖c‖I (4)

are the endpoints of a 100(1 − α)% confidence interval on cTβ. This formula is only com-
putable when I is computable, which in turn is only possible when σ2 is known a priori.
When σ2 is unknown, we need a formula in terms of its estimated value, σ̂2, leading to

cT β̂ − cTβ
‖c‖Î

∼ tn−p,

where Î = V TV/σ̂2 is the estimated Fisher information matrix. Thus, when σ2 is unknown,
a 100(1− α)% confidence interval on cTβ has endpoints

cT β̂ ± t1−α/2n−p · ‖c‖Î , (5)

where t
1−α/2
n−p is the upper α/2 quantile of a Student’s t distribution with n − p degrees of

freedom.
These facts can be used for testing H0 : cTβ = d vs. the alternative, H1 : cTβ 6= d for

particular values of c ∈ Rp and d. Under the null hypothesis,

Tc :=
cT β̂ − d
‖c‖Î

∼ tn−p, (6)
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so the p-value associated with the test is simply Φtn−p(−|Tc|)+(1−Φtn−p(|Tc|)), where Φtn−p

is the cumulative distribution function for a Student’s t distribution with n − p degrees
of freedom. Under a particular alternative hypothesis, say cTβ = d′, Tc is distributed as
a noncentral Student’s t with n − p degrees of freedom and noncentrality parameter λ =
(d′ − d)/‖c‖I . I could not find a derivation of this, so here is one:

Tc =

cT β̂−d′
‖c‖I

+ d′−d
‖c‖I

‖c‖Î/‖c‖I
=

cT β̂−d′
‖c‖I

+ d′−d
‖c‖I√

σ̂2/σ2
=

cT β̂−d′
‖c‖I

+ d′−d
‖c‖I√

(n−p)·σ̂2/σ2

n−p

.

From Equation (3), the first term in the numerator has a standard Gaussian distribution.
The second term in the numerator is the noncentrality parameter. The denominator is the
square root of a χ2

n−p random variable divided by its degrees of freedom. The numerator is a

function of β̂ while the denominator is a function of σ̂2, so the numerator and denominator
are statistically independent. This is precisely the characterization of a noncentral Student’s
t distribution. For a test of size α, we would reject the null if |Tc| > t

1−α/2
n−p . The probability

of doing so under a particular alternative hypothesis is the power of the test and is given by:

1− Φtn−p;λ(t
1−α/2
n−p ) + Φtn−p;λ(−t1−α/2n−p ),

where Φtn−p;λ is the cumulative distribution function for a noncentral Student’s t distribution
with n− p degrees of freedom and noncentrality parameter λ = (d′− d)/‖c‖I . Note we need
to assume a value of σ2 associated with the alternative hypothesis to compute ‖c‖I for the
noncentrality parameter.

As special cases of the above discussion, when c = êi (that is, a vector with a 1 in the ith
entry, and zeros elsewhere), we get confidence intervals for, and hypothesis tests regarding,
βi. When c = ν(xnew), we get confidence intervals for µ(xnew); that is, the mean response
of the model applied to a new data point. Confidence intervals on Y | X = xnew involve an
extra component of uncertainty due to the variance of the conditional distribution: even if
we knew µ(xnew) perfectly, the conditional distribution still has variance σ2. This leads to
an extra term of σ̂2 as compared to Equation (5):

ν(xnew)T β̂ ± t1−α/2n−p ·
√
σ̂2 + ‖ν(xnew)‖2

Î , (7)

which are the endpoints of a confidence interval on Y [Wei05, §3.6].
When we want simultaneous confidence intervals on multiple linear combinations of β,

we must adjust for the multiple comparisons. There is more than one approach to doing so.
Suppose we are interested in Cβ, where C ∈ Rq×p. Then

Cβ̂ ∼ N
(
Cβ,CI−1CT

)
,

which shows that Cβ̂ is an unbiased estimator for Cβ, and that Cβ̂ is normally distributed.
Note that when C = V , we get the distribution of the fitted means, µ̂, since µ̂ := V β̂.
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Suppose we are interested in simultaneous confidence intervals on Cβ at level α. The Bon-
ferroni correction defines α′ = α/q and then simply uses the endpoints in Equation (5) for
each individual component of Cβ, substituting α′ for α. For example, suppose we wanted
a simultaneous 95% confidence interval on Cβ, where C has q = 5 rows. Then α = 0.05
and α′ = 0.01. So we would compute 99% confidence intervals on each component c(i)β,
where c(i) is the ith row of C. This approach is simple but overly conservative in many cases
[Wei05, § 9.1.3].

Another method, due to Scheffé, defines simultaneous confidence intervals for any linear
function of Cβ [Sch59]. This is especially helpful when q is very large (in that case, the
Bonferroni correction renders the confidence intervals too wide to be practically useful).
Suppose C has rank r, and that A ∈ Rr×p is any collection of r linearly independent rows of
C. We wish to estimate simultaneous confidence intervals on quantities of the form hTAβ.2

For example, when h = êi, this is simply the ith component of Aβ, but h can be anything.
Then

hTAβ̂ ± (r · F 1−α
r,n−p)

1/2 · ‖ATh‖Î
is a 100(1 − α)% confidence interval on hTAβ, where F 1−α

r,n−p is the upper α quantile of
Snedecor’s F distribution having r and n − p degrees of freedom in the numerator and
denominator, respectively [SL03, § 5.1.1].

Now suppose C is full rank, and that q < p. We would like to test the hypothesis Cβ = d.
As derived in [Woo17, § 1.3.4],

TC(d) :=
1

q
(Cβ̂ − d)T (CÎ−1CT )−1(Cβ̂ − d) =

1

q
‖Cβ̂ − d‖2

CÎ−1CT
∼ Fq,n−p, (8)

where Fq,n−p is Snedecor’s F distribution. The notation is intended to make it clear that
the test statistic depends on d; where there is no risk of confusion we will simply write TC .
This relationship generalizes (6) since an F distribution with one degree of freedom in the
numerator is equivalent to a t2 distribution [Wei05, § 3.5.3]. The p-value for this test would
be 1−ΦFq,n−p(TC), where ΦFq,n−p is the cumulative distribution function for an F distribution
with the specified degrees of freedom.

Under a particular alternative hypothesis, say Cβ = d′, TC has a noncentral F dis-
tribution with noncentrality parameter λ = ‖d′ − d‖2

CI−1CT . As above, I cannot find the
derivation of this anywhere, so I’ll provide it here. Let LTL = (CI−1CT )−1 (for example, L
is the Cholesky decomposition). Then L(Cβ̂−d′) ∼ N (0, I) and L(Cβ̂−d) ∼ N (L(d′−d), I).

2Since the range of AT is equal to the range of CT , for any vector h′ ∈ Rq, there exists h ∈ Rr such that
CTh′ = ATh.
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Under the alternative hypothesis,

TC =
1

q
(Cβ̂ − d)T (CÎ−1CT )−1(Cβ̂ − d)

=

(Cβ̂−d)T (CI−1CT )−1(Cβ̂−d)
q

(n−p)σ̂2/σ2

n−p

=

‖L(Cβ̂−d)‖22
q

(n−p)σ̂2/σ2

n−p

.

The denominator is a χ2
n−p random variable divided by its degrees of freedom. The numerator

is the sum of squares of independent unit variance Gaussian random variables with mean
vector µ = L(d′ − d), so letting

λ = µTµ

= (d′ − d)TLTL(d′ − d)

= (d′ − d)T (CI−1CT )−1(d′ − d)

= ‖d′ − d‖2
CI−1CT ,

we see that the numerator is a noncentral χ2
q random variable with noncentrality parameter λ,

divided by its degrees of freedom. Since the numerator is a function of β̂, and the denominator
is a function of σ̂2, the numerator and denominator are statistically independent, which
demonstrates the test statistic is F -distributed. For a test of size α, we would reject the null
if TC > F 1−α

q,n−p. The probability of doing so under a particular hypothesis is the power of the
test and is given by:

1− ΦFq,n−p;λ(F 1−α
q,n−p),

where ΦFq,n−p;λ is the cumulative distribution function of a noncentral F distribution with
the stated degrees of freedom and noncentrality parameter.

Equation (8) enables us to compute a confidence region on Cβ. A 100(1−α)% confidence
region is given by {d : TC(d) ≤ F 1−α

q,n−p}. Since TC is a quadratic form, the confidence region

is an ellipsoid centered at Cβ̂ with orientation and size relating to the eigenvectors and
eigenvalues of CI−1CT , as well as the number of rows in C, q, and the confidence level α.
This confidence region is closely related to Scheffé’s method.

A.3 Model Selection

The F -test is useful in several situations. Suppose we are considering a sequence of nested
models: a model consisting only of a grand mean (in which µ does not depend on the features
at all), a model consisting only of main effects, a model with first-order interactions, and a
model with higher-order interactions. We may wish to check H0: the model consists only of
main effects vs. H1: interactions are present. This amounts to checking whether Cβ = 0,
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where Cβ are the components of β corresponding to the interaction terms. Or we may want
to check H0 : µ(x) = µ vs. H1 : µ(x) 6= µ, where µ is the grand mean. In this case, we are
checking whether there is any evidence of the mean response depending on the features.

If a particular feature is categorical with at least three levels, it will consist of at least
two parameters. We would typically want to test whether all associated parameters are
non-zero, not just one. Or if ν(x) consists of multiple transformations of a particular fea-

ture, like ν(x) =
[
· · · x1 x2

1 log(x1) · · ·
]T

, we might want to simultaneously test all the
corresponding components of β for being non-zero. The F -test described here is applicable
to these scenarios.

The F -test is not the only approach to model selection, however; other methods include
those based on information criteria like Akaike’s Information Criterion (AIC) [SL03, § 12.3.3],
the Bayesian Information Criterion (BIC), and Mallow’s Cp statistic [Wei05, § 10.2.1]. These
are given, respectively, by:

AIC = n log(2πσ2) +
1

σ2
‖y − V β̂‖2

2 + 2 · dof (σ2 known)

AIC = n log(2π‖y − V β̂‖2
2/n) + n+ 2 · dof (σ2 unknown)

AICc = AIC +
2dof2 + 2dof

n− dof− 1
(linear model correct)

= n log(2π‖y − V β̂‖2
2/n) +

n(n+ dof− 1)

n− dof− 1
(σ2 unknown)

BIC = n log(‖y − V β̂‖2
2/n) + dof · log(n)

Cp =
‖y − V β̂‖2

2

σ2
+ 2 · dof− n,

where dof is equal to the number of parameters estimated in the model. If σ2 is known a
priori, this is simply p; otherwise, it is p+ 1. Note that AIC comes in two forms depending
on whether σ2 is known a priori. A modification of AIC is often desirable for small sample
sizes; this is known as the corrected AIC, or AICc. The correction term depends on whether
we believe the model truly is normally distributed with a mean depending linearly on the
parameters; this is the formula shown [BA02, § 7.7.6].

These formulae clearly illustrate the tradeoff between a better fitting model and a model
having more parameters. Notably, the BIC formula penalizes degrees of freedom much more
strongly than does the AIC, and thus will lead to simpler models. Caution is advised when
using Cp with unknown σ2 [Woo17, § 1.8.6]. If we must, it is best to estimate σ2 using the
most flexible model under consideration (that is, the model with all parameters included),
and using the same value for all models being compared.

Cross validation is another, more computationally intensive approach to model selection.
By dividing the data set into training, validation, and test sets, we fit the model to the
training set and use the result to predict the response for the data in the validation set, using
the actual response to compute the prediction error. The model giving the best prediction
error is the one we select. Model performance can then be assessed using the test set. (Since
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we are using the validation set to perform model selection, performance on the validation
set is overly optimistic [HTF01, § 7.10].)

Inferences based on models selected according to the data are more complicated than
the formulae above, but in some instances exact equations are still possible [TTLT14]. Al-
ternatively we can use the bootstrap [HTF01, §3.3.2] to get confidence intervals on model
parameters and predictions.

A.4 Checking Model Assumptions

Next, we discuss the model residuals, ε̂(i) = y(i) − µ̂(x(i)). We have already been using the
residuals to estimate the variance, σ2, but examining the residuals is also useful for investi-
gating departures from the assumptions of the linear model: that the response is normally
distributed, that the mean of this distribution depends linearly on the model parameters,
that the variance is constant (or is of the form σ2/w(i) with known w(i)), and that the obser-
vations are statistically independent. These assumptions may be checked by graphing the
residuals.

Let H = V (V TV )−1V T be the so-called hat matrix. Then ε̂ ∼ N (0, σ2(I −H)). Notably,
the residuals are correlated, and have different variances (however, the residuals are statis-
tically independent of µ̂). Because of this, it is typical to standardize the residuals so that
they have equal variance. The internally and externally Studentized residuals are defined as

r(i) =
ε̂(i)√

σ̂2 · (1− hi)

t(i) =
ε̂(i)√

σ̂2
(i) · (1− hi)

,

respectively, where hi is the ith diagonal element of H and σ̂2
(i) = 1

n−p−1

∑
j 6=i ε̂

(j). As [SL03,

§ 10.2] states, (r(i))2/(n − p) has a beta[1
2
, 1

2
(n − p − 1)] distribution which means they are

identically distributed (but not independent). The externally Studentized residuals, t(i),
have a tn−p−1 distribution. The externally Studentized residuals are less prone to outliers
than are the internally Studentized residuals.

Consider a graph of t(i) (or r(i)) against µ̂(x(i)). If the model is correct, we expect to see
a scattering of points with no discernible pattern, since the Studentized residuals would be
identically distributed and independent of the mean response. If there is an apparent trend
in the residuals, that may indicate a nonlinearity in the model.

To assess a potential dependence between the mean response and the variance, [SL03,
§ 10.4.2] recommends plotting the squared residuals, ε(i), against the fitted means, µ̂(x(i)).
If the variance increases with the mean response, this plot will exhibit a wedge shape. We
can apply a smoother such as lowess [II79] to estimate the relationship between the mean
response and the variance. This gives an estimate of the variance associated with each
observation, which can then be used to determine weights for the observations. Since the
variance of the ith observation is assumed to be σ2/w(i), and the estimated variance of the
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ith observation is (ε(i))2, we have w(i) = (ε(i))−2, where we are setting σ2 = 1 since we are
directly estimating the variance of each individual observation. Iterating on this procedure
(estimating the model using weighted least squares, plotting the squared residuals against
the mean response, smoothing this plot to estimate the variance of each observation) gives
an estimate of β that is asymptotically as efficient as knowing the weights a priori.

We can test the normality assumption using a Q-Q plot, which graphs the observed
quantiles of the raw residuals against the quantiles of a standard Gaussian distribution.
Alternatively we could graph the quantiles of the Studentized residuals against the quantiles
of their theoretical distributions [SL03, § 10.5.1].

One of the assumptions of the linear model is that the observations are independent.
If the observations have a known correlation structure, various approaches exist for fitting
models. If we believe the observations are independent, we can check for a specific deviation
from this assumption called serial correlation. That is, we can check for correlations between
sequential pairs of observations. This is especially relevant when the order of observations
is physically meaningful. In the absence of correlation, a residual with positive sign is
equally likely to be followed by a residual with positive or negative sign, which can easily
be examined graphically. A significance test-based procedure was discussed in a series of
papers by Durbin and Watson. This test checks for a first-order autoregressive model for
the residuals: ε̂(i) = ρε̂(i−1) + δ(i), where δ(i) are independent normal variables. Let

D =

∑n
i=2(ε̂(i) − ε̂(i−1))2∑n

i=1(ε̂(i))2
=
ε̂TAε̂

ε̂T ε̂
, where

A =



1 −1 0 0 · · · · · · 0
−1 2 −1 0 · · · · · · · · ·
0 −1 2 −1 · · · · · · · · ·
0 0 −1 2 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · 2 −1
· · · · · · · · · · · · · · · −1 1


Under the null hypothesis of independent observations, D has the same distribution as

r =

∑n−p
i=1 ξiζ

2
i∑n−p

i=1 ζ
2
i

, (9)

where ζi are IID standard Gaussian variables and ξi are the nonzero eigenvalues of (I−H)A—
assuming V is full rank, there will be exactly n − p of these [DW50, pg. 416]. Two issues
present themselves, one computational, the other theoretical. Computing the eigenvalues of
(I −H)A may be computationally intensive if n− p is gigantic or if you happen to be living
in 1950. More problematically, exact tail probabilities for distributions of the form (9) are
not available.

Since H depends explicitly on the features, it will be different for each regression analysis;
however, it can be shown that the eigenvalues ξi of (I − H)A are bounded by pairs of the
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eigenvalues of A, λi [DW50]. Specifically, if we sort the eigenvalues so that ξ1 ≤ ξ2 ≤ · · · ξn−p
and λ1 ≤ λ2 · · · ≤ λn, then λi ≤ ξi ≤ λi+p, i = 1, 2, . . . , (n− p). The eigenvalues of A have a
simple form: λj = 2 · (1− cos(π(j − 1)/n)), j = 1, 2, . . . , n [DW50, pg. 426].

Tighter bounds hold whenever s of the eigenvectors of (I −H)A are linear combinations
of s of the eigenvectors of A. That doesn’t seem like it would happen very often, but since
1 is an eigenvector of A (corresponding to an eigenvalue of zero), when the model includes
a constant affine term, then one of the columns of V is 1, and s ≥ 1. When that happens,
we may discard the corresponding s eigenvalues of A, leaving n− s eigenvalues λi, and the
bounds become λi ≤ ξi ≤ λi+p−s.

These bounds on the eigenvalues of (I −H)A become bounds on the distribution of the
Durbin-Watson statistic: rL ≤ r ≤ rU , where

rL =

∑n−p
i=1 λiζ

2
i∑n−p

i=1 ζ
2
i

,

rU =

∑n−p
i=1 λi+p−sζ

2
i∑n−p

i=1 ζ
2
i

.

Note that the distributions of rL and rU depend on n, p, and s, but not on the features.
It is straightforward to show that rL ≥ λ1 = 0 and rU ≤ λn < 4, which shows that the

Durbin-Watson statistic satisfies 0 ≤ D < 4. In the presence of positive serial correlation,
ρ > 0, D will tend to be closer to 0. When ρ < 0, D will tend to be closer to 4. In
the absence of serial correlation, D will typically be close to 2. Let ΦL, ΦU , and ΦDW be
the cumulative distribution functions of rL, rU , and r, respectively, so that, for example,
Φ−1
L (d) = Prob {rL ≤ d}. In light of the above discussion, Φ−1

L (d) ≥ Φ−1
DW(d) ≥ Φ−1

U (d)
[DW50, pg. 418]. Table 1 shows how these functions provide bounds on the p-values for var-
ious tests related to serial correlation. Evaluating the exact p-values require the eigenvalues
ξi, which depend on the features. Evaluating the bounds only requires tail-probabilities for
ΦL and ΦU , which do not depend on the features (but do depend on n, p, and s). These
have been tabulated for various values of n, p, and s, for example in [DW51].

When performing an analysis with numbers of observations and parameters not repre-
sented in an available table, we are still left with the challenge of computing the tail proba-
bilities of rL and rU . We may proceed by approximating rL/4 and rU/4 as beta-distributed.
Tail probabilities for the beta distribution may then be mapped to p-values for the Durbin-
Watson statistic. The beta distributions are chosen to have the same means and variances
as rL/4 and rU/4, respectively. These may be expressed in terms of the eigenvalues of A, λi.

Test p-value Lower bound Upper bound
ρ = 0 vs. ρ > 0 Φ−1

DW(d) Φ−1
U (d) Φ−1

L (d)
ρ = 0 vs. ρ < 0 1− Φ−1

DW(d) 1− Φ−1
L (d) 1− Φ−1

U (d)
ρ = 0 vs. ρ 6= 0 Φ−1

DW(d′) + 1− Φ−1
DW(d′) Φ−1

U (d′) + 1− Φ−1
L (d′) Φ−1

L (d′) + 1− Φ−1
U (d′)

Table 1: Bounds on p-values for one and two-sided tests regarding the correlation parameter, ρ.
In all cases, d is the observed value of the Durbin-Watson statistic. In the last row, d′ = 2−|2−d|.
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Statistic Mean Variance

r µ = 1
n−p

∑n−p
i=1 ξi σ2 =

2
∑n−p
i=1 (ξi−µ)2

(n−p)(n−p+2)

rL µL = 1
n−p

∑n−p
i=1 λi σ2

L =
2
∑n−p
i=1 (λi−µL)2

(n−p)(n−p+2)

rU µU = 1
n−p

∑n−p
i=1 λi+p−s σ2

U =
2
∑n−p
i=1 (λi+p−s−µU )2

(n−p)(n−p+2)

Table 2: Means and variances of the Durbin-Watson and related statistics

If the eigenvalues, ξi, are in fact known, we can dispense with the bounds entirely. Means
and variances for all three statistics are reported in Table 2.

A beta distribution is typically characterized by parameters α and β. The mean of a
beta distribution is α

α+β
and the variance is αβ

(α+β)2(α+β+1)
, so the beta distribution used to

approximate r, for example, has parameters

α =
µ2(4− µ)

4σ2
− µ

4
,

β =
µ(4− µ)2

4σ2
− 4− µ

4
.

For the purposes of calculating p-values, Φ−1
α,β(d/4) may be substituted for Φ−1

DW(d) in Table 1,
where Φα,β is the cumulative distribution function of a beta random variable with parameters
α and β. For more details and discussion of alternative approaches, see [DW71].

A.5 Isolated Departures from the Model

Finally, we want to examine how any potential outliers affect the fitted model. Small changes
to the response for observations on the outskirts of the feature space can have a big effect
on the model; such points are said to have high leverage. Leverage may be investigated
by examining the diagonal terms of the hat matrix, hi. The higher a particular hi, the
larger the influence of the corresponding observation on the fitted model. We might consider
any observation having hi > 2p/n to have high leverage [SL03, 10.6.1]. An observation that
does not have high leverage, but deviates wildly from the mean response can also have undue
influence on the model. Since the externally Studentized residuals have a tn−p−1 distribution,
any residual with |t(i)| > 2 should be examined (corresponding approximately to the upper
and lower 2.5% quantiles).

If a particular observation is both an outlier and has high leverage, we can try omitting
the observation, or reducing its weight, and refitting. Large changes to the fitted model
indicate the point has high influence. Deciding whether or not to remove the observation
depends on the goals of the analysis, how the data were collected, and so forth. A variety of
statistics are available for quantifying the impact of leaving out a single observation without
actually having to refit the model[SL03, § 10.6.3]. For example, the impact of leaving out
the ith observation to the ith fitted value is hiε

(i)/(1− hi). This can be standardized giving
t(i)
√
hi/(1− hi). A cutoff of 2

√
p/(n− p) can be used for identifying high influence points.
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Another statistic, called Cook’s D, may be written:

D(i) =
(
r(i)
)2 hi
p(1− hi)

.

Cook recommended using F 0.10
p,n−p as the cutoff for identifying high influence points [Coo77].

When one or more observations have been identified as possible outliers, a formal test
may be applied [SL03, § 10.6.4]. If we are testing a set of k observations, we augment ν
with k extra entries. The jth of these entries is 1 for the jth potential outlier, and zero
otherwise. We fit the expanded model. Let γ̂ be the subset of entries of β̂ corresponding to
these extra entries of ν. If the unaugmented model is correct, and the observations under
consideration are not outliers, then γ = 0. The F -test outlined in § A.2 may be applied to
test this hypothesis, giving a p-value for the collection of potential outliers. In this case, the
test statistic is:

TC =
1

k
‖γ̂‖2

Î−1
augmented

∼ Fk,n−p−k,

where Î−1
augmented is the k × k submatrix of Î−1 corresponding to the augmented entries of ν.

The p-value is 1 − ΦFk,n−p−k(TC). If this p-value is small, that constitutes evidence that at
least one of the observations under consideration is an outlier.

B Properties of Generalized Linear Models

In this section, we state various useful facts (without proof) regarding generalized linear
models. For details, see [MN89], [Woo17], and [Agr12]. Generalized linear models have large
sample properties similar to linear models, but with finite data these relationships are not
necessarily practical. The primary goals of this section are to show how to map generalized
linear models to the results of Appendix A and to point out where other methods might be
more reliable.

B.1 Properties of the Estimated Model

Suppose the distribution of Y | X = x is in an exponential family; specifically the distribution
is in the same exponential family for all values of x. Examples include the normal, binomial,
Poisson, and gamma distributions, which all have density functions of the form

fY (y; θ, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)},

where θ is called the canonical parameter, φ the dispersion, and a, b, and c are functions which
characterize the distribution. These distributions have a specific relationship between the
mean and variance: if E[Y | X = x] = µ(x) and Var(Y | X = x) = σ2(x), then distributions
in the exponential family all satisfy σ2(x) = U(µ(x)) · a(φ); that is, the variance depends on
x only through the mean µ as well as on φ [MN89, §2.2.2]. (In the case of the binomial and
Poisson distributions, the dispersion is automatically equal to one; these are one-parameter
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exponential families.) U(µ) is called the variance function. The variance function is distinct
from the variance!

The important property needed for generalized linear models is the relationship between
the mean and variance, which means we can expand generalized linear models to encompass
any distribution where this relationship is known [MN89, §9]. For example, if we believe the
variance increases linearly with the mean, we can use the methods described herein, without
actually knowing the details of the distribution. We see that generalized linear models are
indeed quite general!

Now suppose that g(µ(x)) = η(x) = ν(x)Tβ, where g (called the link function) is a
known monotonic differentiable function, and ν(x) ∈ Rp is a known function. A generalized
linear model is characterized by the distribution of Y | X = x (or the more generally the
relationship between the mean and variance of this distribution), the link function g and
the design function ν. For example, when g is the identity, and the normal distribution is
chosen, we recover the linear model.

We fit generalized linear models using Maximum Likelihood Estimation (MLE), or an
alternative method based on a ‘quasi-likelihood function’ when the exact distribution is
unknown. Let `(µ(β);x, y) =

∑
i `(µ(β);x(i), y(i)) be the log-likelihood or log-quasi-likelihood

expressed as a function of the parameters β and parameterized by the data. Whichever value
of β maximizes the log-likelihood (and therefore the likelihood) is the maximum likelihood
estimate of β. For many choices of distribution and link function, maximum likelihood
estimation corresponds to a convex optimization problem and can be efficiently performed.
We will restrict our attention to such combinations.

The log-likelihood function achieves its maximum possible value when µ = y; that is,
`(y;x, y) is the largest possible log-likelihood. Often there is no choice of β such that µ(β) =
y, due to restrictions imposed by the design function, ν. The scaled deviance, D∗, for a
fitted model with parameter β̂ is defined to be D∗ = 2`(y;x, y)− 2`(µ(β̂);x, y). Necessarily,
D∗ ≥ 0, with smaller values of D∗ indicating a better fit. The scaled deviance has a certain
relationship with the χ2 distribution which is frequently used for inference. Unfortunately,
we need to know the dispersion parameter, φ, in order to compute the scaled deviance. Often
it is better to work with the (unscaled) deviance, D = D∗ · φ which does not involve the
dispersion parameter.

Let {(x(i), y(i))}i=1,...,n be IID samples drawn from the joint distribution of X and Y . Let
V be the matrix whose ith row is ν(x(i)) and assume V is full rank. Then the Maximum
Likelihood Estimate of β, β̂ satisfies V TWV β̂ = V TWz, whereW−1 = diag(g′(µ̂(i))2·U(µ̂(i)))
and zi = η̂(i)+(y(i)−µ̂(i))g′(µ̂(i)). In turn, η̂(i) = ν(x(i))T β̂ and g(µ̂(i)) = η̂(i). These equations
can be used to determine β̂ using an iterative weighted least squares procedure [MN89, §2.5],
but that is not the procedure gamdist uses. Just as importantly, this fact can be used to
derive the large sample properties of β̂ and related quantities.

For example, the large sample distribution of β̂ is N (β, I−1), where I = V TWV/φ is the
Fisher information, which shows that β̂ is asymptotically unbiased. (It is also a consistent
estimator, meaning that under certain regularity conditions, as n→∞, β̂ converges in prob-
ability β.) Many of the formulae of Appendix A hold asymptotically with these equations
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for β̂, I, and the estimated Fisher information Î = V TWV/φ̂, where φ̂ is an estimate of the
dispersion (see below). These formulae can be used for hypothesis tests on linear combina-
tions of the parameters β, to compute the power of these tests against specific alternatives,
and to compute confidence intervals on these linear combinations. Such tests are called Wald
tests.

B.2 Methods with Better Finite-Sample Performance

In a few instances, methods with better performance with finite data are known. These
methods outperform the asymptotic-normal approach for moderate data sizes. For example,
the likelihood ratio test often provides better confidence intervals on β than methods based
on the normal approximation. Any value of β satisfying

2`(β̂;x, y)− 2`(β;x, y) ≤ Φχ2
p
(1− α)

is part of a 100(1 − α)% confidence region on the true parameter. It is worth noting that
when the likelihood is log-concave in β (as many likelihood functions in the exponential
family are, when used with common link functions), this confidence region is a convex set.
Thus, when computing the lower bound on a confidence interval on cTβ, we can solve

minimize cTβ

subject to 2`(β̂;x, y)− 2`(β;x, y) ≤ Φχ2
p
(1− α).

To compute an upper bound, simply negate the objective. In both cases, these are convex
optimization problems, because we are minimizing a linear function restricted to a convex
set. This method is analogous to Scheffé’s method in the sense that we can get simultaneous
confidence intervals on arbitrary numbers of linear combinations of β without any further
adjustment.

When c = ν(xnew), we get a confidence interval on η(xnew). Using the link function, we
arrive at a confidence interval on µ(xnew). Prediction intervals (on y instead of µ) depend
on the family in use. Generically, we compute the standard error on µ using the distribution
of β̂, the standard error corresponding to the family itself, and combine them similarly to
Equation (7).

Now suppose H0 and H1 are nested models with p− k and p degrees of freedom, respec-
tively, k > 0. By nested we mean that H0 is simply the model H1 subject to a constraint
Cβ = d, where C ∈ Rk×p. Let D∗i be the scaled deviance of the model fit under Hi. Then
under H0,

TLR(d) = D∗0 −D∗1
has an asymptotic χ2

k distribution. Computing the scaled deviance requires knowledge of
the dispersion parameter. When this is unknown, rather than substituting an estimate it is
better to work in terms of the deviances, Di = D∗i · φ, which do not require knowledge of φ
to compute. Then under H0,

TF (d) =
(D0 −D1)/k

D1/(n− p)
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has an asymptotic Fk,n−p distribution. We will refer to these tests as the likelihood ratio test
and generalized F -test, respectively.

The Wald test, the likelihood ratio test, and the generalized F -test all require us to fit
the model under H1 and test for excluding parameters. Another test, called the score test,
fits the model under H0 and tests for adding additional parameters. This is useful in a few
circumstances. Firstly, if the MLE of β under H1 lies on the boundary of the parameter
space, the Wald method often breaks down. That doesn’t happen with the score test [Agr12,
§3.1.8]. Secondly, because the score test fits simpler models, it can be faster. In the modern
computing era, this does not seem important, but if we imagine doing a large number of
such tests, automatically, such speed improvements can add up to something significant.

Suppose we are testing H0 : Cβ = d vs H1 : Cβ 6= d. We begin by translating the
constraint, Cβ = d into new coordinates. We have assumed that C ∈ Rk×p, k < p, is
full rank, so C may be written as the product of a lower triangular matrix, L ∈ Rk×p and
a unitary matrix Q ∈ Rp×p. This decomposition may be achieved by computing the QR
decomposition of CT and simply transposing the resulting matrices. We can partition L

into
[
L1 0

]
and Q into

[
Q1

Q2

]
, where L1 ∈ Rk×k is lower triangular, Q1 ∈ Rk×p has

orthonormal rows, and Q2 ∈ R(p−k)×p does too. Then C = LQ = L1Q1. Define ψ = Q1β

and λ = Q2β so that
[
ψ λ

]T
= Qβ. Since C = LQ = L1Q1, Cβ = L1Q1β = L1ψ. Thus

the constraint Cβ = d may be translated into the equivalent L1ψ = d or ψ = L−1
1 d =: ψ0.

Recalling that η(x(i)) = ν(x(i))Tβ, we redefine this as η(x(i)) = ZT
i ψ + XT

i λ, where Zi =
Q1ν(x(i)) and Xi = Q2ν(x(i)). We may then rewrite the null hypothesis as H0 : ψ = ψ0

versus the alternative H1 : ψ 6= ψ0.

Let λ̂ψ0 be the MLE of λ under H0. The score is a vector Υ := ∂`
∂ψ

∣∣∣
ψ0,λ̂ψ0

(most authors

use U to denote the score but we’re denoting the variance function by U so to avoid confusion
we will use Υ). With straightforward calculation we conclude that

Υ = ZTu,

where the rows of Z are Zi, the ith entry of u is:

ui =
y(i) − µ̂(i)(ψ0, λ̂ψ0)

a(i)(φ) · U(µ̂(i)(ψ0, λ̂ψ0)) · g′(µ̂(i)(ψ0, λ̂ψ0))
,

and g
(
µ̂(i)(ψ0, λ̂ψ0)

)
= ZT

i ψ0 +XT
i λ̂ψ0 .

Let

Iψψ = −E

[
∂2`

∂ψ2

]
= ZTWZ, Iψλ = −E

[
∂2`

∂ψ∂λ

]
= ZTWX,

Iλψ = −E

[
∂2`

∂λ∂ψ

]
= XTWZ, Iλλ = −E

[
∂2`

∂λ2

]
= XTWX,
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where W = diag(w1, w2, . . . , wn), and

w−1
i = a(i)(φ) · U(µ̂(i)(ψ0, λ̂ψ0)) ·

(
g′(µ̂(i)(ψ0, λ̂ψ0))

)2

.

These are the components of the Fisher information expressed in terms of ψ and λ. Let
Ψ = Iψψ − IψλI−1

λλ Iλψ. Then ΥTΨ−1Υ ∼ χ2
k under H0.

These facts can be used to compute p-values on the null hypothesis H0 against the
alternative H1. These tests (likelihood ratio, generalized F and score) are preferred (over
their counterparts described in Appendix A) for inference with generalized linear models.
Other methods described in Appendix A such as the Akaike Information Criterion (the
general formula is AIC = −2 · `+ 2 · dof) and cross validation are valid here as well [Woo17,
§3.1.4].

Computing the power of these tests is challenging. One approach is simulation based.
Suppose we want to calculate the power of the likelihood ratio test or the generalized F -test
against an alternative, Cβ = d′. We must translate that into a specific β for the purposes
of computing the power. Often this is accomplishable using historic data we believe to
be representative of the test at hand. Given a set of historic data {(x(i)

h , y
(i)
h )}i=1,··· ,nh , we

simply fit a model to these historic data under the constraint that Cβ = d′. The resulting β̂
is consistent with both the alternative hypothesis and historic data. We might even compute
the power at various β perhaps drawn from a confidence region of that historic fit, which
gives a more robust assessment of the power of the test we wish to conduct. Alternatively,
we can specify a plausible collection of values of µ corresponding to different sets of features
and use that to determine β consistent with the alternative hypothesis.

However we arrive at an alternative β, we can simply calculate µ(i) = g−1(ν(x(i))Tβ)
for any desired x(i). From µ(i) we can sample y(i) from the conditional distribution. For
example, when planning an experiment, we would decide, for any given sample size, how to
assign features to experimental units. Thus we can calculate x(i) in advance, and sample
y(i) from the distribution corresponding to the alternative hypothesis. Then we compute
the test statistic, TLR(d) or TF (d), which requires fitting the model under H1 and H0 to
the simulated data. If the resulting statistic is greater than the corresponding tail value,
we would reject the null hypothesis, indicating we were successfully able to distinguish the
alternative from the null. We would repeat this procedure many times, resampling y(i) each
time. The fraction of simulations in which we reject the null is a consistent estimate of the
power of the test against the alternative [JBFM15].

Suppose we desire 80% power. A few hundred simulations should be adequate to ensure
the power of the test is approximately 80%. These calculations could be done in parallel to
leverage multiple processors. In particularly sensitive applications, we might need to do thou-
sands of simulations, which could be computationally expensive. An alternative approach is
based on approximating the test statistics as having noncentral χ2 or F distributions under
the alternative hypothesis.

A non-simulation-based approach is outlined in [SM88]. We wish to compute the power
against the alternative Cβ = d′ which is translated into ψ = L−1

1 d′ =: ψ′. To do so, we also
need a value for λ associated with the alternative hypothesis. We will call this value λ′.
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The basic ingredients of the power calculation for the likelihood ratio test are the null
hypothesis for ψ, ψ0; the alternative hypotheses for ψ and λ, ψ′ and λ′ respectively; and the
expected MLE of λ under the null hypothesis, in the limit of infinite data, which we will
refer to as λ∗0. The last ingredient is perhaps the only challenging one. If we can generate
features corresponding to a large number of observations (e.g. millions of data points), we
can compute the mean response under the alternative hypothesis and fit the model to the
features and mean response under the null hypothesis. The resulting λ should be a reasonable
approximation to λ∗0. For an alternative approach see [SM88].

The noncentrality parameter associated with the likelihood ratio test is

γ = k − Ξ + 2
n∑
i=1

a−1
i (φ) [b′(θi) (θi − θ∗i )− (b(θi)− b(θ∗i ))] ,

where Ξ is as described below, θi is the canonical parameter for the ith observation evaluated
at ψ′ and λ′, and θ∗i is the same but evaluated at ψ0 and λ∗0. The term Ξ is the trace of a matrix
as described in [SMO92], but [Shi00] indicates Ξ ≈ k which simplifies the calculation of the

statistic considerably. The power of the likelihood ratio test is simply 1−Φχ2
k;γ

(
Φ−1
χ2
k
(1− α)

)
.

To compute the power associated with the generalized F test, write the test statistic as

TF (d) =
(D∗0 −D∗1)/k

D∗1/(n− p)
.

Under the alternative hypothesis, the numerator is a χ2
k,γ random variable divided by its

degrees of freedom, and the denominator is a χ2
n−p random variable divided by its degrees

of freedom, which shows that TF has a noncentral F distribution. The power of this test is
1− ΦFk,n−p;γ (F

1−α
k,n−p).

As in Appendix A, we may use the likelihood ratio test or the generalized F test to
derive an approximate confidence region on Cβ. For example, an asymptotic, approximate
100(1−α)% confidence region on Cβ is {d : TF (d) ≤ F 1−α

k,n−p}. Practically, for each candidate
d we have to refit H0 to evaluate TF (d). It is not obvious how best to characterize this region,
but I have some thoughts. This region is convex when the likelihood is log-concave (as most
common distributions are). If β̂1 is the MLE of β underH1, then TF (Cβ̂1) = 0 and thus Cβ̂1 is
in the confidence region for any α. We can compute the boundaries in particular directions
u by finding the minimum and maximum values of ξ such that TF (Cβ̂1 + ξu) ≤ F 1−α

k,n−p.
Then, we can approximate the region by the largest ellipsoid that lies within the discovered
boundary points. This is a convex optimization problem and can be solved quickly. In light
of the confidence region for the F -test for linear models, I anticipate the confidence region
is approximately, perhaps asymptotically, ellipsoid.
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B.3 Estimating the Dispersion Parameter

There are several ways of estimating the dispersion parameter based on the distribution.
One method, called the Pearson estimator, is based on Pearson’s X2 statistic:

φ̂P =
1

n− p
∑
i

(y(i) − µ̂(i))2

U(µ(i))
,

where U(µ) is the variance function (recall that the variance function is distinct from the
variance). The Pearson estimator is asymptotically unbiased for the dispersion, as its asymp-
totic distribution shows: (n − p)φ̂P/φ ∼ χ2

n−p. This relationship can be used to compute
confidence intervals on the dispersion, similar to Equation (2).

For particular distributions, in certain circumstances, more effective methods for esti-
mating the dispersion are possible. See, for example, [MN89, §4.5.2, §6.2.4, and §8.3.6].
One promising replacement is Fletcher’s estimator, introduced in [Fle12] and described in

[Woo17, §3.1.5]: φ̂F = φ̂P
1+s̄

where s̄ = n−1
∑n

i=1 U
′(µ̂(i))(y(i) − µ̂(i))/U(µ̂(i)).

B.4 Checking Model Assumptions

Checking for systematic or isolated departures from the model inevitably involves examining
the residuals. For families like the binomial, residuals of the form y(i) − µ(i), where y(i) ∈
{0, 1}, are not especially enlightening. Instead, residual-like quantities have been devised
[MN89, §2.4].

The Pearson residual is defined as r
(i)
P = y(i)−µ̂(i)√

U(µ̂(i))
, which simply transforms the residual

to the variance scale. This is helpful for families where the variance increases linearly or
quadratically with the mean. Another type of residual is based on the deviance of each
individual observation, d(i): r

(i)
D = sign(y(i) − µ̂(i))

√
d(i). Another type of residual, the

Anscombe residual, is described in [MN89, §2.4.2].
Let hi be the diagonal elements of the hat matrix, H = W 1/2V (V TWV )−1V TW 1/2. As

in the linear model, we can standardize the residuals. The internally Studentized residuals
for the Pearson and deviance residuals are, respectively,

(r′P )(i) =
y(i) − µ̂(i)√

φ̂ · U(µ̂(i)) · (1− hi)
,

(r′D)(i) =
r

(i)
D√

φ̂ · (1− hi)
.

For the externally Studentized residuals, we would need to refit the model leaving out each
observation in turn. Unlike linear regression, there is no simple formula for doing so. In-
stead, it is common to start from the fitted model having all observations, remove a single
observation and carry out a single iteration of the fitting procedure [MN89, §12.5].
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Informal checks for systematic departures from the model involve plotting the residuals
(ideally, the internally or externally Studentized deviance residuals) against the fitted η̂ or
µ̂, against the features, or against a variable not included in the model (a so-called added
variable plot). When plotting µ̂ it is useful to transform to the constant information scale.
That is, instead of plotting the residuals against µ̂, plot against 2 ·

√
µ̂ for a Poisson model

or 2 sin−1
√
µ̂ for binomial models. The appearance of a trend in these plots can indicate an

issue with the variance function U(µ), the link function, of the scale of one or more of the
covariates.

Formal tests for the variance function embed the chosen function in a family of functions
indexed by a parameter ζ. A common choice is U(µ) = µζ . Suppose the chosen variance
function corresponds to ζ = 1. We can use a score test to compute a p-value against the null
hypothesis that ζ = 1, and confidence intervals on ζ, to assess whether the data disagree
with our assumption [MN89, §12.6.2].

Assessing adequacy of the link function is similar. We embed the link function in a family
of link functions and assess how the fit improves over the family. For the binomial family,
the family of link functions

g(µ;λ) = log

[
1

λ

((
1

1− π

)λ
− 1

)]

contains the logistic function (λ = 1) and the complementary log-log link (λ→ 0) as special
cases [MN89, §11.3.2]. Again, a score test may be employed to compute p-values against a
null hypothesis regarding λ, or a confidence interval may be calculated.

Finally, the linear dependence between η and one or more features might be suspect. We
may wish to test whether η is a smooth, additive, but potentially non-linear function of the
parameters. This can be done use the techniques described in Appendix C. Since natural
cubic splines reduce to a linear model in the limit of infinite smoothing, the smoothing
parameter is a natural choice for a formal test in the spirit of those considered for the
variance and link functions.

B.5 Isolated Departures from the Model

As in the linear model, even if the assumptions are essentially correct, there may be a small
number of outlying points. As with the linear model, if any of the diagonal elements of the
hat matrix, hi > 2p/n, the corresponding observations have high leverage [MN89, §12.7.1].

For assessing influence, the analogue of Cook’s D statistic is

D(i) = (β̂(i) − β̂)T (V TWV )(β̂(i) − β̂)/pφ̂

where β̂(i) is the fit resulting from omitting the ith observation [MN89, §12.7.3]. We may
use the same cutoff as in the linear model, F 0.10

p,n−p for identifying high influence points.
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C Models with Regularization

• Bayesian interpretation

• What is the impact to hypothesis tests? Confidence intervals? Power? Predictions?

• Model selection? Post-selection inference?

• Analysis of residuals? Outliers, leverage, influence?
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Changelog

2020-12-27

There was a typo in the formula for Scheffé’s method. Previously we wrote F
1−α/2
r,n−p which

has been corrected to F 1−α
r,n−p.
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