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Introduction

Orbit determination is the process of estimating the motion of a satellite based
on repeated measurements over time. Measurements may include the range—
the distance from the satellite to a ground station—or the azimuth and elevation
of the satellite. We focused on range measurements only. These measurements
are nonlinear functions of the orbit; hence orbit determination is equivalent to
inverting a system of nonlinear equations.

Let yi be the ith range measurement (collected at time ti), and let fr(x; t) be
the distance from the ground station to a satellite with orbit x at time t. The
goal of orbit determination is to find x so that yi ≈ fr(x; ti) for all i.

Least squares

The traditional approach solves a sequence of least squares problems:

minimize
∑N

i=1(yi − f̂r(x; ti))
2,

where f̂r is the affine approximation to fr centered at xk. The solution, x⋆,
forms the next linearization point xk+1. This method is known as the Gauss-
Newton algorithm and is in popular use in industry today.

Robust methods

Least squares methods are sensitive to non-Gaussian noise in the measurements.
Real-life measurements often have fatter tails than Gaussian analysis would
suggest—real data sets have outliers. We replaced the residual-squared penalty
with a Huber penalty:

φhub(r) =

{

r2 |r| ≤ M

M (2|r| −M ) |r| > M,

whereM is a parameter defining the width of the quadratic region. This penalty
is less sensitive to outliers than an ℓ2 penalty.

Trust region penalty

Since we repeatedly linearize the (non-convex) fr, solutions far from the lin-
earization point are untrustworthy. We added a penalty on deviations from the
linearization point, xk. Putting it all together, we iteratively solved

minimize
∑N

i=1 φhub(yi − f̂r(x; ti)) + λ‖W 1/2(x− xk)‖22,

where W is diagonal with entries corresponding to diag(JTJ), with J the
Jacobian. This idea was inspired by the Levenberg-Marquardt algorithm. We
trade off between the competing objectives using λ, which is similar to a trust
region size parameter. Compared to the least squares approach, this method is
robust against outlying measurements and takes into account the fidelity of the
affine approximation by discouraging solutions in directions where the function
is changing quickly.

Trust region weight

We can adaptively choose the trust region weight, λ. If we anticipate the
solution will have much smaller residuals, but in fact the residuals did not
decrease by much, we likely deviated too far from the linearization point. If the
predicted improvement was accurate, the linear approximation was good and
we can try loosening the trust region penalty. Let

δ̂ =
N
∑

i=1

φhub(yi − fr(x
k; ti))−

N
∑

i=1

φhub(yi − f̂r(x
k+1; ti)),

δ =
N
∑

i=1

φhub(yi − fr(x
k; ti))−

N
∑

i=1

φhub(yi − fr(x
k+1; ti)).

Here, δ̂ is the predicted improvement in the residual penalty, and δ is the
actual improvement seen. If δ ≥ αδ̂, for 0 < α ≤ 1, it means the true
improvement in fit was comparable to the predicted improvement, validating
our affine approximation. We decrease λ to λ/βsucc, where βsucc > 1, since

we may be overly restricting the trust region. If δ < αδ̂, the true improvement
did not live up to expectations, indicating our approximation is not very good.
In this case, we increase λ to λ/βfail, where βfail < 1, to decrease the size of
the trust region.

Huber penalty parameter

As we near convergence, the residuals mimic the noise distribution of the mea-
surements. Hence, we can use the data itself to select the Huber penalty pa-
rameter, M . We modeled the data as a mixture of Gaussians. Most of the data
is low-noise, with some large outliers. We used an Expectation-Maximization
algorithm to estimate the noise for both groups, and chose M to be the stan-
dard deviation of the low-noise measurements. Unfortunately, this approach did
not work well in practice, so we used a fixed M value of 0.015, corresponding
to slightly larger than the data noise. There is room for future work here.

Other modeling details

We used a typical commercial injection orbit with a semimajor axis of 20, 000
kilometers. We used a simple two-body propagator both to generate the data
and to solve the estimation problem. Atmospheric and light propagation ef-
fects were neglected. Ranging data from three ground stations in Los Angeles,
Washington D.C., and Athens were simulated when the elevation of the satel-
lite was greater than 10◦. Noise was added, with 90% of measurements having
low noise (standard deviation 10 meters) and the remaining having high noise
(standard deviation 1 kilometer). We scaled W so that the adaptively-chosen
λ was between 1 and 100. This is equivalent to choosing the units of λ. In a
real least squares problem, we would perform an orbit determination to identify
the outlying data points, remove these, and re-optimize. This approach works
extremely well in practice, but was not followed here. One of the benefits of
our approach is that this second optimization is unnecessary.

Accuracy

In practice, a full orbital revolution of data is needed before an accurate orbit
determination may be performed using least squares methods. A method that
gives an accurate answer more quickly than that is invaluable, since ranging
data is expensive. We compared the performance of least squares and our
robust method using amounts of data varying from 0.5 orbital revolutions to 3
revs (for a single instance for each data point). Even after half a rev of data,
the robust penalty outperformed least squares using three full revs.
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Convergence

In all cases examined, the robust problem converged more quickly than the
least squares approach. This may be due to the resemblance of our trust region
penalty to proximal methods, which have well-known convergence benefits. The
figure shown uses three orbital revolutions of data.
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Conclusion

With linear systems and many low-noise measurements, all methods work well.
Sophisticated methods are most justified in nolinear or high noise situations,
when relatively few measurements are available, or when fast convergence rates
are valuable. In such situations, convex optimization techniques dramatically
outperform least squares.


