ThankBeer: A Beer Recommendation Engine
Final Report

Robert Wilson
Department of Electrical Engineering
Stanford University
Email: rwilson4 @stanford.edu

Abstract—We discuss a beer recommendation engine that
predicts whether a user has had a given beer as well as the rating
the user will assign that beer based on the beers the user has
had and the assigned ratings. k-means clustering is used to group
similar users for both prediction problems. This framework may
be valuable to bars or breweries trying to learn the preferences of
their demographic, to consumers wondering what beer to order
next, or to beer judges trying to objectively assess quality despite
subjective preferences.

I. INTRODUCTION

The beer drinkers of today face an unprecedented variety
of options. This variety poses its own problem for novices
and experts alike: what should I drink next? Few things in
this world surpass the disappointment of drinking bad beer,
yet given the subjectivity of taste, to whom should an unsure
patron turn for advice on what to order? Knowing the prefer-
ences of the customer can aid a bartender in recommending a
drink, but a properly trained machine learning algorithm has
the potential to outperform even the beer connoisseur in this
task.

Before making a recommendation, a human or machine
must first learn the preferences of the patron. This learn-
ing process inevitably follows some combination of two ap-
proaches, focusing on beers or qualities. In the former, we ask
the patron their favorite beers. In the latter, we ask what kinds
of beers (hoppy, sour, etc.) the patron likes. These questions
address what a patron likes and why. Both approaches provide
insight into consumer behavior and the qualities of a great
product, and may be used in conjunction to make better
recommendations.

An obvious starting point is to ask the user of a machine
learning-based system to provide a list of their favorite beers.
A search functionality included in our system permits the user
to do just this. Casual users, however, may have trouble freely
recalling their favorite beers, so a prompt-based approach may
help users remember beers they had forgotten about—provided
we can predict which beers someone has had better than they
can remember. There is an additional benefit to being able to
predict whether a user has had a beer, or at the very least has
access to it. If we recommend, e.g. a beer only available in
Germany to a person in California, the recommendation is not
valuable regardless of its validity. For someone to have had
a beer, it necessarily must have been available to them, so
predicting availability is correlated with predicting whether a

user has actually tried a beer. Even if a person has access to
a beer, they may have chosen not to order it due to personal
preferences, so predicting whether a user has had a beer has
some overlap with predicting their opinion of it.

The rating assigned to a beer depends on the objective
quality of the beer, colored by the preferences of the drinker.
Averaging the ratings of many may converge to a measure
of the objective quality of the beer but does not account for
individual taste. Thus any impersonal measure of the quality
of a beer is of limited utility. Ideally we should ask only those
individuals who like the same beers we do to recommend
beers; clustering users based on preferences permits just this.

Gathering data is often a non-trivial task in designing a
machine learning algorithm. We set up www.ThankBeer.com
to solicit ratings and test predictions. As of this report, we
have roughly thirty users and nearly two thousand data points
on which to test the algorithms discussed here. Users are
presented with a series of beers to rate so their preferences
may be identified. They may search for specific beers or
breweries (from a database of roughly five thousand beers
mostly from the United States'). They may also search for
a bar, leading to a beer menu which is sorted according to the
personalized preferences of the viewer. Sorting beer menus
based on personal preferences is one of the major goals of
this project.

II. PREDICTING PAST PURCHASES

For the purposes of predicting past purchases, we define
the experience matrix R having elements r;; € {—1,0,+1}
where 7;; = —1 means user ¢ has told us they have never
had beer j, r;; = +1 means user 7 has told us they have had
beer j, and r;; = 0 means we do not know whether the user
has had this beer. Of course r;; really is either —1 or +1,
the goal of this section is to estimate it. Let us first discuss
how we initially predicted this, which will form a convenient
benchmark against which we may measure the success of more
advanced algorithms.

In order to begin gathering data as quickly as possible, we
initially implemented a correlation-based approach to predict-
ing whether a user ¢ has had a beer. For appropriate weights
L € [—1,1] measuring the correlation of users ¢ and k, we

ICourtesy: www.beerme.com

predict

. . <Zk7§z éikrkj)
Tij = S181

Zk-;éq‘, |7ks]

In determining the correlation coefficient ¢;;,, we wanted to
capture the idea that two users having the same beer says
more than two users not having had a beer (given the typical
user has had relatively few beers). Thus we defined

, +2
Tz’j =
Tij

and using the Pearson correlation for #;;:
= ZjeB(réj - F;)(T;cj - F;ﬁ)
ik =
VEen(rly =7\ [T sy — 1)

with bar denoting average over the absent index. Sums (includ-
ing in computing the unshown averages) are over only those
beers for which 7;; and 7; are actually known. In the case
these two users have no beers in common, their correlation is
undefined.

By considering all data gathered to date, we can apply the
Leave One Out Cross Validation process to measure the suc-
cess of this benchmark algorithm. We remove a single datum,
predict the label for that datum based on the residual data, and
count the errors. Because we would like to recommend beers
the user can easily access without flying around the world, we
are concerned primarily with the rate of false positives (cases
where we thought a user had had a beer, but in fact had not).
This is most important when requesting ratings from the user
for the purposes of learning preferences. The user can only rate
beers they have had; it is frustrating only to be presented beers
the user has never heard of. Thus when learning preferences, a
natural strategy is to present the beer we are most confident the
user has had, but not yet rated. The error of the algorithm, then,
is the number of false positives divided by the total number
of positives. Our benchmark algorithm has an error of 49%.
This seemingly large error is partially because only 25% of
our data points are positive, which in turn reflects the failure
of our algorithm to present the user with beers they have had.

Let’s try a different approach. We model the event that
user ¢ has had beer j as a Bernoulli random variable with
parameter ¢;. That is, all users are considered the same, and
;5 is simply drawn from this distribution, taking on value +1
with probability ¢; and —1 with probability (1 —¢;). We can
estimate ¢; as

Tij = +1

otherwise

1

b= > Uri; = +1}
T i #£0)

and predict 7;; = 1 if dgj > 0.5 and —1 otherwise. Simple
enough, but the resulting error is 47%. Let’s adopt a clustering
approach, modeling 7;; ~ Bern (¢, (;);) with user ¢ in cluster
c(i) € {1,...,k}. The updated estimate

Beiiri = S, 1{e(f) = (i)} 1{ry; = +1}
c(i)j > L{e(l) = (i) }1{re; # 0}

—All data points
—Without experienced user

045

04

LOQCY Error

03

025

2 4 & 8 10 12 14
Number of Clusters

Fig. 1. Error with increasing number of clusters

considers only those users in the same cluster as user 1.
While user ratings are restricted to be *1, cluster centroids
are allowed to take on any value, being the average of the
user ratings in that cluster. So ¢ € R**IBl (where |B| is the
number of beers) has entries

o= 2o e H{c(l) =i}

1] — .

T () =1}

We use the L; norm in determining the cluster for a user ¢:

c(f) = arg minz Ire; — cijl
! J

summing over only those beers for which we know 7,;. We
use the standard approach, initializing centroids randomly,
and iteratively assigning users to clusters and redetermining
centroids until convergence. Fig. 1 shows the mean error
as the number of clusters increased. Because of the random
initialization, the error varied from run to run, so twenty trials
were considered for each data point shown in the figure, with
the associated standard deviation shown as dashed lines about
the mean. This type of graph is displayed throughout this
paper; dashed lines always represent one standard deviation
above and below the mean, shown as a solid line.

We found something interesting: the error actually dimin-
ished if we ignored one of the users. Fig. 1 shows in red the
LOOCV error when ignoring said user. This user was unusually
experienced; we hypothesize because we have relatively few
users, he unduly influenced the clustering. Since he has had
more beers than anyone else in this study only one other
person was in his cluster (the author, actually) except when
the number of clusters was low. Thus any beer he has had the
author hasn’t led to a false positive. This shows the importance
of having numerous persons in each cluster.

We must decide the number of clusters to use. For the
purposes of this report, and in light of the number of users, we
simply looped over all the options, capping at half the users.
In light of the aforementioned finding, fewer clusters having

as5r

0451

0.4r

LOOCY Error

0.3r

095 . L :
0 5 10 15
Number of Clusters

Fig. 2. Brewery and state-based clustering error

many users are preferable for robustness. However, our data
shows the error continued to decrease as the number of clusters
was increased. Intuition sheds some light on the situation. We
conjecture based on personal experience there are two types
of beer drinkers: aficionados who have tried many of the beers
available in their area, and novices, who do not actively seek
out good beers and only drink what is available at the typical
bar or party. We conjecture further that novices throughout
the United States will have had mostly the same beers, while
aficionados will exhibit geographical diversity owing to the
small distribution region of most craft breweries. Thus the
number of clusters, intuitively, should be one (for the novices)
plus the number of major brewing centers represented in the
database. At this point there is insufficient data to confirm or
reject this hypothesis.

One method to make better use of a small data set is to
project the features to a smaller space. The problems we
encountered are partially due to few people having had a par-
ticular beer. Yet in predicting availability, it seems reasonable
to conjecture that if a person has access to one beer from a
brewery, they likely have access to others. While the flagship
beer of a brewery tends to have a wider distribution region than
smaller batches such as seasonal beers, it seems reasonable to
base our clustering algorithm on breweries instead of beers:
if two users have had beers from the same brewery, they are
similar. Fig. 2 shows the resulting LOOCV error. This brewery-
based strategy did not perform as well as the original k-means
approach; clustering based on the city or state of the brewery
did still worse. New ideas are needed to make further progress.

III. PREDICTING RATING

A user may rate a beer out of five stars. The predic-
tion strategy initially implemented (again in the interest of
getting something working as quickly as possible) mirrors
the correlation-based approach that formed our benchmark
strategy for predicting whether a user had had a beer. For
this section, r;; € {0,1,...,5} represents the rating assigned

Frequency
(=] [(=] (=] (=] [= (=]
[T = N S N = - R N+ < N =)
T T T T T
L L | L L

=]

[=]

Errar

Fig. 3. Prediction error

by user ¢ to beer j, with 0 denoting the user has not rated this
beer (perhaps because they have not had it). We would like to
predict how a user would rate a beer if they had it.

The correlation-based strategy predicts a weighted average
of the ratings other users have assigned the beer under consid-
eration. The rating profile for a user ¢ is normalized according
to:

= _ Mo (1)
>;(rig —74)?

The normalized predicted rating for user ¢ is

oo Dokpi Pkl 1Tk > 0}
Y > ki Wiy > 0}

where p; is the Pearson correlation for the ratings of users @
and k. The unnormalized predicted rating is found by inverting
Equation 1 and then rounding to the nearest integer. (Rounding
was not initially used, but is useful to compare against the
multinomial distribution-based methods discussed below.) Via
the same Leave One Out Cross Validation procedure discussed
above, we may predict the rating for a single datum using
the remaining data and compare against the actual value. The
errors, defined as the difference between prediction and reality,
were distributed as shown in the histogram of Fig. 3. The
approximate symmetry of the histogram shows the strategy
overrates as often as it underrates. The average of the absolute
value of the errors was 0.78.

We can model the rating as being drawn from a multinomial
distribution where r;; = k with probability ¢;;, k=1,...,5
(22:1 ¢;x = 1 for all beers j), which ignores the individual
preferences of the users. We estimate

7 > Hre =k}
bk =
>0 rej > 0}
The predicted rating is arg max;,, d;]k Alternatively we could

simply predict the average over all ratings and round at the
end.

Beer—based clustering
Style—based clustering
102F K
1 F
g
50981
-
!
o 096F
—
0941
082r
08 .
0 2 6 a 10

4
Number of Clusters

Fig. 4. Beer and style-based clustering prediction error

We can cluster users similar to before, but we anticipate,
because the factors influencing taste are significantly more
complicated than those involving access to a beer, the number
of clusters needed will be much higher than before, resulting
in fewer data points per cluster and a larger resulting error. We
can apply a similar strategy as when clustering via breweries
to reduce the state space. We clustered by style: users who like
similar styles are similar. Styles (e.g. stout or TPA) were taken
from the Beer Judge Certification Program handbook. Fig. 4
compares the performance of beer and style-based clustering.
Here, the error actually increases with increasing number of
clusters, perhaps due to insufficient data.

Normalizing the ratings improves the error rate, but not the
trend, as shown in Fig. 5. Clearly these clustering strategies
do not succeed in predicting the available data. Projecting
onto still smaller spaces may help. The style-based clustering
strategy neglected the relative similarities between styles. For
example, a pale ale and an IPA are similar; the styles could be
combined. Some styles are sufficiently uncommon they could
be neglected altogether for the purposes of clustering. It must
be remembered, however, that style popularity differs from
region to region: styles common in Germany may be unusual
in the United States.

At this point we must consider not only what the user
likes, but also why. Users of www.ThankBeer.com can apply
keywords like hoppy or sweet to beers and in the very
near future they will be able to assign a degree, letting the
community decide that one beer is hoppier than another. We
can then project each beer onto this lower-dimension feature
space (the number of relevant features is likely much less
than the number of beers or styles) and perform the clustering
there. This will hopefully result in far fewer clusters, giving
more training examples per cluster and lower error. More
importantly, it permits the users to tell us directly why they
like or dislike the beers they do.

—— Beer-based clustering
— Style-based clustering

LOQCY Error
L]
= w
[da} o

=]

m

=
T

=1
m
T

075
0

4
Number of Clusters

Fig. 5. Beer and style-based clustering prediction error based on normalized
ratings

IV. FUTURE WORK

The plan laid out for predicting rating based on clustering
in feature space is in progress. The best method for predicting
user rating is still the correlation coefficient-based approach
implemented initially. Although clustering reduced the error
associated with predicting whether a user has had a beer,
more work is needed since the error rate is still unacceptably
high. Combining the two prediction problems may help since
personal preferences influence whether a user has had a beer.

Modeling user ratings as a mixture of Gaussians instead of a
multinomial distribution provides may provide more flexibility.
We would remove the requirement that predicted rating be an
integer. The rating would be normally distributed with mean
and variance depending on the cluster. Due to the complexity
of tastes, a neural network seems like a promising possibility,
eliminating the clustering approach and modeling preferences
as a continuous spectrum based on some combination of,
e.g. sweetness and hoppiness as reported by the users.

One potentially valuable excursion would be to apply these
methods to beer judging, which is sometimes criticized for em-
phasizing adherence to arbitrary style guidelines. This policy is
intended to place beers of a common style on an equal footing
and reduce the impact of the judges’ personal preferences. In
practice, beers that do not fit neatly into a particular category
are punished, regardless of how enjoyable they are. The effect
is to discourage creativity and the evolution of styles that led to
the fairly recent explosion of craft brewing in the first place. A
system that learns the personal preferences of judges permits
them to rate beers as they see fit, knowing their biases can be
corrected for and ratings combined to provide an assessment
less sensitive to style guidelines.

ACKNOWLEDGMENT

The author would like to thank the early adopters of
www.ThankBeer.com who donated ratings and put up with
an admittedly klunky interface.

